Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Theory of optical properties of 6.1 Å III-V superlattices: The role of the interfaces

Identifieur interne : 00C210 ( Main/Repository ); précédent : 00C209; suivant : 00C211

Theory of optical properties of 6.1 Å III-V superlattices: The role of the interfaces

Auteurs : RBID : Pascal:03-0351607

Descripteurs français

English descriptors

Abstract

Interfacial interdiffusion in quantum wells and superlattices could alter the interfacial strain, band alignment, and even the atomic symmetry at the interface, thus potentially changing the electronic and optical properties. We consider the InAs/GaSb system describing the interdiffused interfaces via a simple kinetic model of molecular beam epitaxy growth. The predicted atomic positions after interdiffusion are then used in a pseudopotential theory to describe the electronic and optical consequences of interdiffusion. We determine (i) the effects of different interfacial bonding compositions on the electronic and optical properties; (ii) the segregation profiles at the normal and inverted interfaces; and (iii) the effect of structural disorder on band gaps. The application of our method to the InAs/GaSb superlattices allows us to explain numerous observed results and trends. © 2003 American Vacuum Society.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0351607

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Theory of optical properties of 6.1 Å III-V superlattices: The role of the interfaces</title>
<author>
<name sortKey="Magri, Rita" uniqKey="Magri R">Rita Magri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Istituto Nazionale per la Fisica della Materia, S3, and Dipartimento di Fisica Universita di Modena e Reggio Emilia, Via Campi 213/A, Modena, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Istituto Nazionale per la Fisica della Materia, S3, and Dipartimento di Fisica Universita di Modena e Reggio Emilia, Via Campi 213/A, Modena</wicri:regionArea>
<wicri:noRegion>Modena</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>National Renewable Energy Laboratory, Golden, Colorado 80401</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>National Renewable Energy Laboratory, Golden</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zunger, Alex" uniqKey="Zunger A">Alex Zunger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Istituto Nazionale per la Fisica della Materia, S3, and Dipartimento di Fisica Universita di Modena e Reggio Emilia, Via Campi 213/A, Modena, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Istituto Nazionale per la Fisica della Materia, S3, and Dipartimento di Fisica Universita di Modena e Reggio Emilia, Via Campi 213/A, Modena</wicri:regionArea>
<wicri:noRegion>Modena</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0351607</idno>
<date when="2003-07">2003-07</date>
<idno type="stanalyst">PASCAL 03-0351607 AIP</idno>
<idno type="RBID">Pascal:03-0351607</idno>
<idno type="wicri:Area/Main/Corpus">00CC97</idno>
<idno type="wicri:Area/Main/Repository">00C210</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1071-1023</idno>
<title level="j" type="abbreviated">J. vac. sci. technol., B., Microelectron. nanometer struct. process. meas. phenom.</title>
<title level="j" type="main">Journal of vacuum science and technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical interdiffusion</term>
<term>Energy gap</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Interface structure</term>
<term>Optical constants</term>
<term>Pseudopotential methods</term>
<term>Semiconductor superlattices</term>
<term>Surface segregation</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7867P</term>
<term>6865C</term>
<term>7321C</term>
<term>6835F</term>
<term>7820C</term>
<term>7115D</term>
<term>Etude théorique</term>
<term>Indium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Superréseau semiconducteur</term>
<term>Diffusion mutuelle chimique</term>
<term>Méthode pseudopotentiel</term>
<term>Structure interface</term>
<term>Ségrégation surface</term>
<term>Bande interdite</term>
<term>Constante optique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Interfacial interdiffusion in quantum wells and superlattices could alter the interfacial strain, band alignment, and even the atomic symmetry at the interface, thus potentially changing the electronic and optical properties. We consider the InAs/GaSb system describing the interdiffused interfaces via a simple kinetic model of molecular beam epitaxy growth. The predicted atomic positions after interdiffusion are then used in a pseudopotential theory to describe the electronic and optical consequences of interdiffusion. We determine (i) the effects of different interfacial bonding compositions on the electronic and optical properties; (ii) the segregation profiles at the normal and inverted interfaces; and (iii) the effect of structural disorder on band gaps. The application of our method to the InAs/GaSb superlattices allows us to explain numerous observed results and trends. © 2003 American Vacuum Society.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1071-1023</s0>
</fA01>
<fA02 i1="01">
<s0>JVTBD9</s0>
</fA02>
<fA03 i2="1">
<s0>J. vac. sci. technol., B., Microelectron. nanometer struct. process. meas. phenom.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Theory of optical properties of 6.1 Å III-V superlattices: The role of the interfaces</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MAGRI (Rita)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZUNGER (Alex)</s1>
</fA11>
<fA14 i1="01">
<s1>Istituto Nazionale per la Fisica della Materia, S3, and Dipartimento di Fisica Universita di Modena e Reggio Emilia, Via Campi 213/A, Modena, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Renewable Energy Laboratory, Golden, Colorado 80401</s1>
</fA14>
<fA20>
<s1>1896-1902</s1>
</fA20>
<fA21>
<s1>2003-07</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>11992 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2003 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>03-0351607</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of vacuum science and technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Interfacial interdiffusion in quantum wells and superlattices could alter the interfacial strain, band alignment, and even the atomic symmetry at the interface, thus potentially changing the electronic and optical properties. We consider the InAs/GaSb system describing the interdiffused interfaces via a simple kinetic model of molecular beam epitaxy growth. The predicted atomic positions after interdiffusion are then used in a pseudopotential theory to describe the electronic and optical consequences of interdiffusion. We determine (i) the effects of different interfacial bonding compositions on the electronic and optical properties; (ii) the segregation profiles at the normal and inverted interfaces; and (iii) the effect of structural disorder on band gaps. The application of our method to the InAs/GaSb superlattices allows us to explain numerous observed results and trends. © 2003 American Vacuum Society.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C21C</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H35F</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70H20C</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B70A15</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7867P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>6865C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7321C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>6835F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7820C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>7115D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Superréseau semiconducteur</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Semiconductor superlattices</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Diffusion mutuelle chimique</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Chemical interdiffusion</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Méthode pseudopotentiel</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Pseudopotential methods</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Structure interface</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Interface structure</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Ségrégation surface</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Surface segregation</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Bande interdite</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Energy gap</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Constante optique</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Optical constants</s0>
</fC03>
<fN21>
<s1>246</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0332M000421</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00C210 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00C210 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:03-0351607
   |texte=   Theory of optical properties of 6.1 Å III-V superlattices: The role of the interfaces
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024